Table 1. PCBs Chemical Decomposition Technology | Cate | Method | Description | PCB | Chemical | Op. Con d. | Company | Basic | | ost | Characteristics | App | | Starting | |-------------------------|----------|--|--------------|--|--|--|----------------------|---------|------|---|-----------|-------|---| | gory | | | Conc. | used | Temp/Pres | | Technology | Install | Chem | | Tec | Plant | Date | | | DMI/NaOH | PCBs are decomposed by
NaOH under DMI solvent.
Products are Biphenyl and
NaCl. Hydrogen source is
insulation oil. | High/
Low | NaOH
DMI(1,3-
dimethyl-
2-
imidazolid
inon) | 200-210 C
/Atm | Tokyo
Denryoku
/Mitsui
Co./Neos | Own
Process | High | High | -Complicated Process -DMI recovery is key to this process. | Yes
L1 | U/C | 2001
Tokyo
Denryoku | | ion by Caustics | t-BuOK | 2 step reaction;
1 st reaction is catalytically
dechlorination by hydrogen
under paraffin and 2 nd stage is
reaction of PCBs with t-
BuOK to produce Kcl and
Biphenyl-buthoxide etc., | High
Low | Solvent
(Paraffin)
H2, N2,
Pd/C cat
t-BuOK | 180-210 C
/ Atm
200-250 C
/ Atm | Kansai
Tech
/Kansai
Denryoku | Own
Process | High | High | -1 st stage can be applied under 15% PCB concentrationPCB concentration in 2 nd stage should be 200 ppm underCost of t -BtOK is very expensive. | Yes
L1 | Req. | TBD | | Dechlorination reaction | BCD | Dechlorination reaction is taken place under the N2 condition at 300-350 deg C and atm, by adding hydrogen donor, catalyst and caustic to PCBs. Products are Biphenyl; it's derivative, inorganic salt and small amount of water. | High/
Low | NaOH or
KOH,
Hydro-
carbon,
catalyst | 300-350 C
/ Atm | Ebara | Licensed
from USA | High | Low | -High reaction
temperature may
cause of fire.
-Very difficult to
control operation
temperature. | Yes
L1 | Yes | 2000
Ebara | | | SD | Dechlorination occurs by Dispersed Sodium at low temperature and atmospheric condition. Good reactivity. Products are Biphenyl etc. | High
Low | Na
dispersed
Na
dispersed/
Activated
agents | 160-170 C
/ Atm
50-60 C
/ Atm | Nihon
Soda/ Ito
Chu | Own
Process | Low | Med. | -Low Reaction TempSimple ProcessOil product is easily separatedNa is produced by himself. | Yes
L1 | Yes | 2000
Nihon
Soda
/Tohoku
&
Hokuriku
Denryoku | | Cate | Method | Description | PCB | Chemical | Op. Con d. | Company | Basic | | ost | Characteristics | | roval | Starting | |-------------------|-------------|--|-----------------|-----------|------------|-----------------|--------------------|---------|------|-----------------------|------|-------|-------------------| | gory | | | Conc. | used | Temp/Pres | | Technology | Install | Chem | | Tech | Plant | Date | | | OSD | Dechlorination occurs by | High/ | Na | 80-140 C | Nuclear | Licensed | Low | High | -Low reaction temp. | Yes | Yes | | | | | Dispersed Sodium at low | Low | dispersed | / Atm | Fuel Ind. | from | | | -Simple process. | | | 1999 | | S ₂ | | temperature and atmospheric | | | | Ltd./Sum | Canada
(Ontario | | | -High cost Na, | L1 | | Sumitomo
Denko | | tic | | condition. | | | | itomo | Hydro | | | imported from | | | Deliko | | austics | | Good reactivity. | | | | Corp/Su | Technology) | | | Canad a. | | | | | చ్ | | Products are Biphenyl etc. | | | | mitomo
Denko | | | | | | | | | þ | SP | Dechlorination occurs by | High | Na | 120-190 C | Shinko | Licensed | Low | High | -Low reaction temp. | Yes | No | TBD | | | 51 | Dispersed Sodium at low | Ingn | dispersed | /Atm | Pantec | from | LOW | Ingn | -Simple process. | 103 | 140 | IDD | | Reaction | | temperature and atmospheric | | dispersed | Atm | Tantee | Canada | | | -High cost Na, | L3 | | | | l ga | | condition. | Low | 1 | 90 C/Atm | | (Powertech) | | | imported from | 23 | | | | Dechlorination Re | | Good reactivity. | Eo. | |) | | | | | Canada | | | | | | UV/Catalyst | PCB and NaOH are solved in | 1 st | UV/NaOH | 50-60 C | Toshiba | Own | High | Mid. | -Low reaction temp. | Yes | Req. | TBD | | at | | Hydrogen donor solution, and | React | /IPA | / Atm | | Process | | | -Rapid reaction. | | _ | | | l : | | UV irradiation. | ion | | | | | | | -Complicated process. | L 3 | | Test | | lole | | Dechlorination is taken place | 2 nd | Pd/C cat | 75 C | | | | | -Safety for Mercury | | | plant: | | ြဘ | | and Cl will be react with | React | | / Atm | | | | | lamp | | | 2000 | | O | | NaOH. In 2 nd stage reaction, | ion | | | | | | | -High catalyst cost. | | | | | | | PCB remained is | | | | | | | | | | | | | | | dechlorinated by Catalyst to | | | | | | | | | | | | | | | Biphenyl. | | | | | | | | | | | | ## Approval: Tech --- Approved Level (L) of technology by authority. L1: Plantis in operation or construction. L3: Bench scale tests have been completed. Plant --- Status of Construction: U/C; Under Construction Req.; Requesting TBD – To Be Determined L2: Pilot plant test has been completed. L4: Laboratory tests have been completed | Cate | Method | Description | PCB | Chemical | Op. Con d. | Company | Basic | Cost | | Characteristics | Approval | | Starting | |---------------------|---|---|--------------|-------------------------------|---------------------|--|--|---------|------|--|-------------------|-------|--------------------------| | gory | | | Conc. | used | Temp/Pres | | Technology | Install | Chem | | Tech | Plant | Date | | | Super Critical
water(SCW)
oxidation | Oxidation reaction by using High Temp/High pressure water(SCW). | Low/
High | Water/
NaOH | 380 C
/ 300 Atm | Organo | Own
Process | High | Low | -High pressure and
high temperature
-Corrosion problem
by severe condition. | Yes
L2 | No | TBD | | of PCB | Hot Water
Dechlorination | Oxidation reaction by using high temp and high pressure hot water. | Low/
High | Water/
Sodium
carbonate | 380 C
/ 270 Atm | MHI
(Mitsubishi
Heavy
Industry) | Licensed
from USA | High | Low | -High pressure and
high temperature
-Corrosion problem
by severe condition. | Yes
L1 | U/C | 2000
MHI,
Nagasaki | | Total Decomposition | Gas phase
hydrogen
reduction | Reduction by high temperature hydrogen. | Low/
High | Hydrogen | Over 850
C / Atm | Tokyo
Boeki/
Nihon
Sharyou | Licensed
from
Canada
(Ecological) | High | Low | -High Temperature.
-Require H2 generator | Yes
L2 | No | TBD | | | UV/Biodegrad
ation | 1 st Stage, PCB is decomposed
by UV.
2 nd Stage,PCB is decomposed | High | Solvent
(IPA)
/NaOH/UV | Amb/Atm | JR | Own
Process | High | Low | -Long reaction time for both stagesSafety for Mercury | Yes
L3 | No | TBD | | | | by Biodegradation | Low | Bacteria | 30 C/ Atm | | | | | lamp -Bacteria -Treatment of bacteria sludge. | | | | | | Mechano-
chemical | Dry grinding PCB with CaO and SiO2 in a ball mil. | Low/
High | CaO, SiO2 | Amb/Atm | Tohoku
Univ.
Saito | Own
process | Low | Low | -Low temp/low pressEasy operation -Low Installation and operation cost. | No
(U/A)
L4 | No | TBD | | | | | | | | | | | | | | | | ## Approval: • Tech - Approved Level (L) of technology by authority. L1: Plant is in operation or construction. L3: Bench scale tests have been completed. Plant - Status of Construction: U/C; Under Construction Req.; Requesting • TBD – To Be Determined L2: Pilot plant test has been completed. L4: Laboratory tests have been completed